



## **Project BSENSED**

Digital twin from multi-sensor data for enhanced border surveillance and situational awareness

> **Kick-off Meeting** Videoconference, 16 September 2025



#### Call 2024/CFP/INNOVATE/01

Novel Technologies for Futureproofing the EU External Borders (open theme)

Grant Agreement n. 2025/276



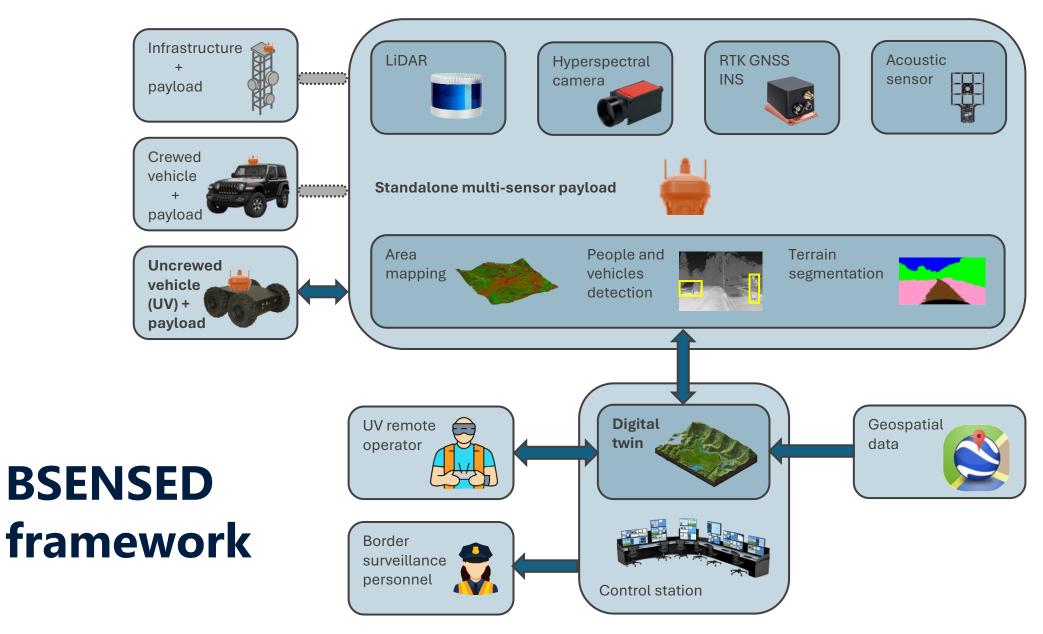
#### **Beneficiary**

Instituto Superior Técnico University of Lisbon (Portugal)



**Distribution Level** 




# Challenges

- Border surveillance, either on infrastructures or on natural terrain, is a complex task.
- Surveillance systems can generate an overwhelming amount of data, sensitive to adverse weather conditions, making real-time situational awareness a cumbersome task for limited staff.
- Robotic platforms may assist in remote surveillance but require personnel training and trust in the equipment operation.



## Scientific objectives

- 1. To create a digital twin of an outdoor area combining geospatial and multisensor data obtained from multi-platforms (stationary and/or movable).
- 2. To automate the fusion of multimodal data towards:
  - efficient data analysis and visualization for enhanced situational awareness,
  - ii. automatic area mapping and characterization,
  - iii. automatic people and vehicle detection.
- 3. To enable an uncrewed ground vehicle (UGV) for safe remote operation during multi-sensor data acquisition on complex terrain.
- 4. To create a training simulator for UGV remote operators training based on the digital twin.





## **Gantt**

| WP<br>Nr. | WP Name<br>Task & Subtask descriptions                                                                                     | M1<br>Sep'25 | M2<br>Oct'25 | M3<br>Nov'25 | M4<br>Dec'25 | M5<br>Jan'26 | M6<br>Feb'26 | M7<br>Mar'26 | M8<br>Apr'26 | M9<br>May'26 | M10<br>Jun'26 | M11<br>Jul'26 | M12<br>Aug'26 |
|-----------|----------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
| 1         | Project Management and Dissemination                                                                                       |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 1.1: Financial, Administrative & Technical Management                                                                 |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 1.2: Dissemination                                                                                                    |              |              |              |              |              |              |              |              |              |               |               |               |
| 2         | Use Case Definition and System Requirements                                                                                |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 2.1: Scenario Analysis, System Requirements and Performance Metrics                                                   |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 2.2: Hardware Architecture                                                                                            |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 2.3: Software Architecture                                                                                            |              |              |              |              |              |              |              |              |              |               |               |               |
| 3         | Hardware Development                                                                                                       |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 3.1: Standalone Multi-Sensor Payload Prototype                                                                        |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 3.2: UGV - Robotic Enabler for Complex Terrain                                                                        |              |              |              |              |              |              |              |              |              |               |               |               |
| 4         | Software Development                                                                                                       |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 4.1: Digital Twin - Geospatial and Multi-Sensor Data Integration                                                      |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 4.2: Digital Twin - People and Vehicles Detection, Localization and Representation                                    |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 4.3: Digital Twin + Safe UGV Remote Operation: Terrain Segmentation and Traversability Map                            |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 4.5: Safe UGV Remote Operation: UGV Obstacles Detection and Collision Avoidance and Enhanced Perception               |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 4.5: Training Simulator - Uncrewed Ground Vehicle and Multi-Sensors Modelling + Digital Twin Offline Version          |              |              |              |              |              |              |              |              |              |               |               |               |
| 5         | Testing, Validation and Evaluation                                                                                         |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 5.1: Systems Integration and hardware validation and testing                                                          |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 5.2: Digital Twin with Multi-Sensor Payload on Infrastructure and Crewed Vehicle - Validation and Evaluation          |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 5.3: Digital Twin with Multi-Sensor Payload on Robotic Enabler with Safe Remote Operation - Validation and Evaluation |              |              |              |              |              |              |              |              |              |               |               |               |
|           | Task 5.4: Training Simulator - Validation and Evaluation                                                                   |              |              |              |              |              |              |              |              |              |               |               |               |

| DELIVERABLES      |                         |                                                                                                                                                                                                                                            |  |  |  |  |
|-------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Delivery<br>Month | Name                    | <b>Description</b>                                                                                                                                                                                                                         |  |  |  |  |
| M1                | Project website         | Website of project with news and outcomes.                                                                                                                                                                                                 |  |  |  |  |
| M12               | Conference presentation | Presentation at international robotics conference.                                                                                                                                                                                         |  |  |  |  |
| M12               | WP1 report              | Draft of final financial, technical and scientific reports and of international journal paper.                                                                                                                                             |  |  |  |  |
| M2                | WP2 report              | Summary of use case definition, system requirements and hardware and software architectures.                                                                                                                                               |  |  |  |  |
| M5                | WP3 report              | Summary of integration of standalone multi-sensor payload and of UGV upgrade and respective resulting prototypes. Includes architectures and representative illustration of overall prototypes and respective functioning (images/videos). |  |  |  |  |
| M11               | WP4 report              | Summary of digital twin, training simulator and collision avoidance software developed, including architectures and representative illustration of execution (images/videos).                                                              |  |  |  |  |
| M12               | WP5 report              | Summary of systems testing, validation and evaluation, and lessons learned, with representative images/videos of systems performance in use case operational scenario.                                                                     |  |  |  |  |

## Research team



#### Prof. Alexandra Moutinho

Principal Investigator / Researcher on cyber-physical systems, intelligent perception, multimodal data fusion and autonomous systems.



### Prof. António Grilo

Researcher on communications and IoT.



#### Prof. Susana Vieira

Researcher on artificial intelligence, machine learning and digital twins.



### Prof. Agostinho Fonseca

Researcher on systems integration, experimental testing and dynamic systems simulation.



#### Prof. João Fernandes

Researcher on electric powertrain and power management.



#### Prof. José Azinheira

Researcher on uncrewed vehicles autonomous navigation and computer vision.

# Research infrastructures



## Mobile Robotics Laboratory

Laboratory dedicated to mobile robotics developments, with equipment required for mechatronic systems development and integration.



### **Robotics Arena**

A 12x4x4 m volume protected with nets and covered by motion capture system for ground and aerial drones testing and validation.



### **VIGILANT UGV**

4-wheels lightweight uncrewed ground vehicle used in mobile robotics research.



## Laboratory of Electrical Machines

The equipment available at this laboratory is suitable for the hardware electric development requirements of WP3, namely the UGV powertrain upgrade.



The project leading to this presentation has received funding from Frontex under the Frontex Research Grants Programme.
Call for Proposals 2024/CFP/INNOVATE/01 Grant Agreement No. 2025/276.



This presentation reflects only the authors' view. Neither the European Union nor Frontex are responsible for any use that may be made of the information it contains.

